备案号:辽ICP备19007957号-1
聆听您的声音:feedback@highmark.com.cn企业热线:400-778-8318
Copyright ©2015- 海马课堂网络科技(大连)有限公司办公地址:辽宁省大连市高新技术产业园区火炬路32A号创业大厦A座18层1801室
这门课程要求学生具备扎实的微积分和线性代数基础,如对导数、积分、矩阵运算等知识的熟练掌握
微分方程的学习需要学生从求答案到理解解的结构与性质的思维转变,要适应证明题和理论推导
作业难度大,每周投入时间远超于一般大学同类课程,还需要查阅大量资料去完成作业
安排经验丰富的数学教师,深入剖析抽象概念。根据考试重点的各类求解方法
重点讲解难点如一阶线性、高阶常系数线性、恰当方程求解等,编写针对性练习册
每个方法配备大量不同难度层次的题目,并附上解题思路与步骤解析,帮助学生熟能生巧
讲义 / 课程讲稿(首选):Caltech 课程讲义与课件——这是准绳,先看讲义再看教材。示例:Math 2 lecture notes(Caltech)。
教科书(备参考):James C. Robinson, An Introduction to Ordinary Differential Equations(Caltech 推荐阅读清单中列出,适合作为理论基础与习题参考)。
(可选)应用/工程向参考:Boyce & DiPrima 《Elementary Differential Equations》用于大量练习与工程题型。
辅助:线性代数参考(用于矩阵指数、对角化),如 Strang 或 Trefethen/矩阵教材(若线性代数薄弱务必补)。
始终以课程讲义为第一手材料,教科书只作补充与练习来源。
先审题并分配时间:先扫全卷,按分值分配时间,先做中等难度题保证得分。
写清每一步(show workings):即使最后算错,清晰的步骤能拿部分分。写出识别方程类型与选择方法的理由(这点助审阅者理解你的思路)。
图要规范:相平面题画图时标注坐标轴、平衡点、流向箭头、稳定/不稳定区域与关键曲线(如 nullclines)。图上必要处写小注说明。
证明题写结构化:列出假设 → 引用关键引理/定理(写出名称)→ 给出关键估计或不等式 → 得结论。不要在证明中遗漏常数/域的说明。
答案最后检验:做 quick sanity check(极端情形、边界情况、维数/单位检查)。
书写规范:保持符号一致(例如用 prime 或 dot 表示导数的一致)。
阅读原文:https://www.highmarktutor.com/news/30585_60.html
版权作品,未经海马课堂 highmarktutor.com 书面授权,严禁转载,违者将被追究法律责任。
备案号:辽ICP备19007957号-1
聆听您的声音:feedback@highmark.com.cn企业热线:400-778-8318
Copyright ©2015- 海马课堂网络科技(大连)有限公司办公地址:辽宁省大连市高新技术产业园区火炬路32A号创业大厦A座18层1801室
hmkt088